
axioms

Review

Survey of Eight Modern Methods of Hamiltonian Mechanics

Alexander D. Bruno *,†,‡ and Alexander B. Batkhin ‡

����������
�������

Citation: Bruno, A.D.; Batkhin, A.B.

Survey of Eight Modern Methods of

Hamiltonian Mechanics. Axioms 2021,

10, 293. https://doi.org/10.3390/

axioms10040293

Academic Editor: Anastasios

Lazopoulos

Received: 1 October 2021

Accepted: 1 November 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Keldysh Institute of Applied Mathematics of RAS, Miusskaya sq. 4, 125047 Moscow, Russia; batkhin@gmail.com
* Correspondence: abruno@keldysh.ru; Tel.: +7-495-399-3549
† Current address: Keldysh Institute of Applied Mathematics of RAS, 125047 Moscow, Russia.
‡ These authors contributed equally to this work.

Abstract: Here we describe eight new methods, arisen in the last 60 years, to study solutions of
a Hamiltonian system with n degrees of freedom. The first six of them are intended for systems
with small parameters or without them. The methods allow to find families of periodic solutions
and families of invariant n-dimensional tori by means of analytic computation near a stationary
solution, near a periodic solution and near an invariant torus, using the corresponding normal form
of a Hamiltonian. Then we can continue the founded families by means of numerical computation.
In a Hamiltonian system without parameters, only periodic solutions and invariant n-dimensional
tori form one-parameter families. The last two methods are intended for systems with not small
parameters, which do not depend on time. They allow computing sets of parameters, which guarantee
the stability of some solutions for linear (method seven) and nonlinear (method eight) systems. We
do not consider chaotic behaviors, but only regular ones.

Keywords: Hamiltonian system; normal form; truncated Hamiltonian; family of periodic solutions;
generating family; negative mass; skeleton; quantum calculus

1. Introduction

The following methods, arisen in the last 60 years, are considered here.

1. A normal form method that allows one to study regular perturbations near a stationary
solution [1] (Ch. I), near a periodic solution [1] (Ch. II) [2,3], near the invariant torus [1]
(Ch. II) and near families of such solutions [1] (Ch. VII, VIII), as well as bifurcations
of periodic solutions and invariant tori and their stability.

2. The method of truncated systems obtained with the help of Newton polyhedra, which
allows the study of singular perturbations. For the theory and three applications,
see [4] (Ch. IV). Other applications: Beletskiy’s equation on satellite oscillations [5,6],
problems of periodic flyby of the Moon and planets.

3. The method of generating families of periodic solutions (regular and singular). Gen-
erating families are the limits of families of periodic solutions as the perturbing
parameters tend to zero. The solutions of the generating families consist of certain
parts of the solutions to the limit problem. If the limit problem is integrable, then the
generating families are found analytically. Applications: the restricted three-body
problem, where the limit problem is the two-body problem and the generating fam-
ilies are one-parameter [1] (Ch. III–V) [7–9]; Hill’s problem [10], where the limit
problem is an intermediate Henon problem and each generating family consists of
one solution [11,12]. This approach can be applied to families of invariant tori as well.

4. Methods of numerical computation of families of periodic solutions and of families of
invariant tori.

5. The method of generalized problems admitting in Celestial Mechanics bodies with
negative masses [13]. Such problems have unified complete families of periodic
solutions, which facilitates their calculation. Example: generalized Hill’s problem [13].
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6. Calculation of the network of families of periodic solutions and families of invariant
tori as a “skeleton” of a part of the phase space. Poincaré [14] wrote about the
benefits of such “skeletons”. Examples: the Hill problem [13] and partly the restricted
three-body problem [9,15].

7. Method of computation of a set of stability of stationary solutions of a linear multi-
parameter Hamiltonian system combines modern techniques of elimination theory
and power geometry [4]. It can be applied in the case when the Hamiltonian function
depends on parameters in a polynomial way and gives the description of the boundary
of the set of stability in the parameter space [16], and breaking it into cells in which
nonlinear terms cannot impact the type of stability [17]. Examples: one gyroscopic
problem with three-dimensional space of parameters [16], a double pendulum with a
following force.

8. Application of the q-analog of the classical subresultant for the characteristic polyno-
mial of the matrix of a linear multi-parameter Hamiltonian system allows one to find
resonant manifolds [18] and invariant coordinate subspace of the normal form of a
Hamiltonian system. Resonant manifolds together with normal form in the vicinity
of a stationary solution provide the method of dividing the set of stability into cells
where formal stability takes place. The invariant coordinate subspaces allow reducing
the phase flow of the initial system to a subspace of essentially less dimension.

There are many more works on these methods. The authors and their collaborators
contributed to the development and application of these eight methods. These methods
are discussed below in the order shown in Sections 2–9.

2. Normal Form
2.1. A Vicinity of Stationary Solution
2.1.1. Resonant Normal Form

Consider an autonomous Hamiltonian system

ξ̇ j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξ j
, j = 1, . . . , n, (1)

with n degrees of freedom in the vicinity of a stationary point (SP)

ξ = (ξ1, . . . , ξn) = 0, η = (η1, . . . , ηn) = 0. (2)

If the Hamilton function γ(ξ, η) is analytic at this point, then it can be expanded in a
power series

γ(ξ, η) = ∑ γpqξpηq (3)

where p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ Zn, p, q ≥ 0, ξp = ξ
p1
1 ξ

p2
2 . . . ξ

pn
n . Since point (2)

is stationary, expansion (3) begins with quadratic terms. The linear part of system (1)
corresponds to them. The eigenvalues of its matrix A are split into pairs

λj+n = −λj, j = 1, . . . , n

Let λ = (λ1, . . . , λn). Canonical coordinate changes

ξ, η→ x, y (4)

keep the system Hamiltonian.

Theorem 1 ([1] (Ch. I)). There is a canonical formal transformation (4), which reduces the
Hamiltonian (3) to the normal form

g(x, y) = ∑ gpqxpyq, (5)



Axioms 2021, 10, 293 3 of 32

where the series g(x, y) contains only resonant terms with

〈p− q, λ〉 = 0

and the quadratic part g2(x, y) of g(x, y) has its normal form (so that the matrix of the linear part
of the system is the Hamiltonian analog of the Jordan normal form).

Here 〈p, λ〉 = p1λ1 + · · ·+ pnλn is the scalar product.
If λ 6= 0, then the normal form (5) is equivalent to a system with fewer degrees

of freedom and additional parameters. Normalizing transformation (4) preserves linear
automorphisms

ξ, η→ ξ̃, η̃, t→ t̃.

For the real original system (1), the coefficients gpq of the complex normal form (5)
satisfy special realness relations, and under the standard canonical linear change of coordi-
nates x, y→ X, Y, the system with Hamiltonian (5) goes over into the real system. There
are several ways to calculate the coefficients gpq of the normal form (5). The simplest is
described in the book [19] by Zhuravlev, Petrov, Shunderyuk. The resonant normal form
of the autonomous Hamiltonian system near the stationary solution, which takes into
account only the eigenvalues of the matrix A of its linear part and without restrictions on
this matrix A, was introduced in 1972. Previous variants of normal form were proposed by
Birkhoff [20], Cherry [21], Gustavson [22] and others. They assumed some restrictions on
the matrix of linear parts of the system. Later, a slightly simpler superresonant normal form
was introduced, which took into account the Jordan cells of the normal form of the matrix
A [23]. However, these additional simplifications did not allow an additional decrease
in the number of degrees of freedom. For a more general approach to the normal form,
see [24].

Suppose that the Hamiltonian function

γ(ξ, η, µ) (6)

depends on the small parameter µ = (µ1, . . . , µs) and that when µ = 0, the origin ξ = η = 0
is a stationary point. The Hamiltonian (6) is assumed to be analytic in all of its arguments
in some neighborhood of the point ξ = η = 0, µ = 0. The following question arises: What
is the simplest form to which we can reduce (6) by using a canonical change of variables

ζ = b(w, µ) (7)

where ζ = (ξ, η) and w = (u, v) ?
Let λ1, . . . , λn,−λ1, . . . ,−λn be the eigenvalues of the matrix

B =
1
2

J
∂2γ

∂ζ∂ζ
, J =

(
0 En

−En 0,

)
when ζ = 0, µ = 0. We write λ = (λ1, . . . , λn).

Theorem 2. There is a formal canonical substitution (7) that reduces the Hamiltonian function (6)
to the normal form

h = ∑ hpq(µ)upvq ,∑ h(m)
pq upvqµm

where the power series hpq(µ) are nonzero only when 〈p− q, λ〉 = 0.

We point out some features of this theorem. First, the parameter does not change
under a normalizing transformation. Second, the µ-dependence of the normal form lies
in the fact that for resonant indices p, q the coefficient hpq depends on µ in an arbitrary
fashion. Third, the eigenvalues λj do not depend on µ and are computed for the value
µ = 0.
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The theory of a resonant normal form near a stationary solution is described in detail
in the book [1] (Chapter I).

Usually the normalizing transformation diverges in the whole neighborhood of the
stationary point. However, near the point there are such analytical families of stationary
points, of periodic solutions and of n-dimensional invariant tori, which adjoin the point.
Next we describe these families in coordinates of the normal form and small parameters.

2.1.2. Families of Stationary Points

Let there be zeros among eigenvalues λj. Let them be λ1 = . . . = λl = 0 and other
λj 6= 0. Then, stationary points satisfy the following system of equations

∂g
∂xi

=
∂g
∂yj

= 0, i =1, . . . , l, (8)

xj = yj = 0, j =l + 1, . . . , n. (9)

Here g = g(x, y, µ). The coordinate subspace (9), we denote as L0.

2.1.3. Families of Periodic Solutions

All non-zero imaginary eigenvalues λj, we divide into such blocks that all eigenvalues
λj from the same block are pairwise commensurable, and they are not commensurable
with λk from other blocks. A block can consist of one eigenvalue.

Let one such block correspond to a set of indices I = {i1, i2, . . . , im}.
Then I = {i1, ..., im} is a set of increasing natural indices i : l < i 6 n. Here 1 6 m 6

n− l. Consider the coordinate subspace

KI =
{

x, y : xj = yj = 0 for all l < j 6∈ I
}

.

Then in the coordinate subspace KI , a family of periodic solutions satisfies the follow-
ing system [25]

∂g
∂yj

= λjxja,
∂g
∂xj

= λjyja, j = 1, . . . , l, and j ∈ I. (10)

From its solutions, we have to exclude the family of stationary points (8), (9). In (10) a
is a free parameter. We can exclude it and obtain the system (8) and

xj
∂g
∂yk
− xk

∂g
∂yj

= yj
∂g
∂xk
− yk

∂g
∂xj

= 0, j ∈ I\k,

yk
∂g
∂yk
− xk

∂g
∂xk

= 0 fixed k ∈ I.

In total, we obtain 2(l + m)− 1 equations for 2(l + m) unknowns, which describes a
one-parameter family of periodic solutions.

2.1.4. Families of n-Dimensional Irreducible Invariant Tori

Such family can go through the stationary point x = y = 0 only if all n eigenvalues
are purely imaginary

<λj = 0, j = 1, . . . , n,

and equation 〈λ, p〉 = 0 does not have integer solution p ∈ Z, p 6= 0. Then in the normal
form (5),

g = h(ρ1, . . . , ρn), where ρj = xjyj, j = 1, . . . , n.
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We put

A =

{
x, y : xj

∂h
∂ρj

= λjxja, yj
∂h
∂ρj

= λjyja, j = 1, . . . , n

}
.

We consider the set A in the cartesian coordinates ρ = (ρ1, . . . , ρn). In the generic
case, each coordinate subspace (with respect to ρ) contains one one-dimensional (with
respect to ρ) component of the set A that does not lie in a smaller coordinate subspace.
Consequently, the set A consists of 2n − 1 such components; for each d 6 n there are
exactly n!/[d!(n− d)!] of these components situated in d-dimensional (with respect to ρ)
coordinate subspaces. In particular, there is one component,

A0 =

{
ρ :

∂h
∂ρj

= λja; j = 1, . . . , n

}
, (11)

situated outside the coordinate subspaces.
It is the formal family of the tori.
Let

h = 〈ρ, λ〉+ 1
2
〈ρ, Tρ〉+ · · · ,

where T is a symmetric matrix. In the generic case, det T 6= 0 and the system of equations
in (11) has a one-dimensional solution,

ρ = T−1λ(a− 1) + o(a− 1).

System (11) can be written in the form

∂h
λj∂ρj

=
∂h

λ1∂ρ1
, j = 2, . . . , n.

The formal familyA0 will be analytical if eigenvalues λ satisfy the following condition
on small divisors [25].

Condition ω
Let ωk = min|〈p, λ〉| over 〈p, λ〉 6= 0, ||p|| < 2k, p ∈ Zn, where ||p|| = ∑ |pj|. Then

−
∞

∑
k=1

log ωk

2k < ∞.

It is a very weak numerical restriction on the eigenvalues λ.

2.1.5. Stability

The stationary point ξ = η = 0 can be stable if all eigenvalues λ are pure imaginary.

Condition An
k . Equation

〈p, λ〉 = 0

has no integer solutions p with ||p|| 6 k.

This condition means that there are no resonances up to and including the order k.
If it is satisfied, then in the normal form (5)

g =
[k/2]

∑
l=1

gl(r) + g̃(k)(x, y), (12)
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where gl(r) are homogeneous polynomials from

rj = xjyj, j = 1, . . . , n,

of degree l, and g̃(k) is a series from x, y starting with powers above k and [k/2] is an integer
part of number k/2.

Thus it is possible to obtain a Hamiltonian of the form (12) with partial normalization
only up to order k, when g̃(k) contains not only resonance terms.

In particular, under the condition An
2 we have

g =
n

∑
j=1

λjrj + g̃(3)(x, y), (13)

Under the condition An
4 , we have

g =
n

∑
j=1

λjrj +
n

∑
j,k=1

µjkrjrk + g̃(5)(x, y). (14)

Definition 1. A fixed point ξ = η = 0 of a real Hamiltonian system (1) is stable by Lyapunov if
for every ε > 0 in “cube”

||ξ||+ ||η|| < ε

there exists a closed integral (2n− 1)-dimensional manifold L surrounding the point ξ = η = 0
from all sides.

Lemma 1. A stationary point ξ = η = 0 is Lyapunov stable if there exists sign-definite real
integral

f (ξ, η) = fl(ξ, η) + f̃ (l)(ξ, η) (15)

of the system (1), where fl(ξ, η) is the homogeneous form of degree l. In other words,

∑
j=1

(
∂ f
∂ξ j

∂γ

∂ηj
− ∂ f

∂ηj

∂γ

∂ξ j

)
= 0 (16)

and fl(ξ, η) does not return to zero at any ξ, η except the point ξ = η = 0.

Stability is possible only if <λ = 0. If the condition An
2 is satisfied, then all λj are

different and non-zero. In this case, the complex coordinates x, y are related to the real
coordinates X, Y by the canonical substitution

xj =
1√
2i

(
iXj −Yj

)
, yj =

1√
2i

(
iXj + Yj

)
, j = 1, . . . , n.

With complex conjugation

x̄j = −iyj, ȳj = −ixj, j = 1, . . . , n,

and the Hamiltonian function g(x, y) goes into itself, i.e., into (5):

gpq = ḡqp(−i)||p+q||.

Suppose
X2

j + Y2
j = Rj, λj = iαj, j = 1, . . . , n.
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Then in real coordinates Rj > 0, αj is real,

rj = xjyj =
i
2

(
X2

j + Y2
j

)
=

i
2

Rj, j = 1, . . . , n, (17)

n

∑
j=1

λjrj = −
1
2

n

∑
j=1

αj

(
X2

j + Y2
j

)
= −1

2
〈α, R〉. (18)

Theorem 3 ([26]). If the condition An
2 is satisfied and the numbers α1, . . . , αn are of the same sign,

then the fixed point ξ = η = 0 is stable according to Lyapunov.

Here, the role of the integral f is played by the Hamiltonian γ itself, for it is an integral,

the notation (13) has the form (12) with k = 2 and the form γ2 = g2 = −1
2

n
∑

j=1
αjRj =

−1
2
〈α, R〉 is of constant sign, for R > 0.

By formal we will mean power series, about the convergence of which nothing
is known.

Definition 2 ([27]). A stationary point (2) of a real Hamiltonian system (1) is formally stable if
there exists a formal real sign-defined integral (15) of the system (1), i.e., the formal identity (16) is
satisfied and the homogeneous form fl is zero only at ξ = η = 0.

Formal stability means that the departure of solutions from the fixed point, if anything,
is very slow: slower than any finite degree t.

Definition 3 ([28] (Ch. 4, § 4)). A fixed point (2) of a real Hamiltonian system (1) is formally
stable if there exists formal real integral

f (ξ, η) = fl(ξ, η) + fl+1(ξ, η) + . . . + fm(ξ, η) + f̃ (m)(ξ, η)

of the system (1), where fk(ξ, η) are homogeneous forms of degree k and the sum

f ∗(ξ, η) = fl + fl+1 + . . . + fm

does not convert to zero in some neighborhood of the point ξ = η = 0 beside it.

Since rjrk = −
1
4

RjRk, then under the condition An
4 the entry (14) takes the form

g = −1
2
〈α, R〉 − 1

4

n

∑
j,k=1

µjkRjRk + g̃(5). (19)

Hence, all the coefficients of µjk are real.
Let K ⊂ Rn be a linear hull of integers q satisfying the equation 〈α, q〉 = 0, and Q =

{q > 0, q 6= 0} ⊂ Rn is a non-negative orthant without origin.

Theorem 4 ([29]). If the condition An
4 is met and in (19)

n

∑
j,k=1

µjkqjqk 6= 0 for q ∈ K ∩Q, (20)

then the point ξ = η = 0 is formally stable in the sense of the Definition 2

Here, the normal form of the Hamiltonian (5) is used to construct the formal integral.
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According to (17) in real coordinates, the normal form (12) is

g = −1
2
〈α, R〉+

[k/2]

∑
l=2

hl(R) + g̃(k), (21)

where the homogeneous polynomials hl =

(
i
2

)l
gl(R) are real. The following generaliza-

tion of Theorem 4 is proved verbatim as well.

Theorem 5. If the condition An
k is satisfied and in the normal form (21)

[k/2]

∑
l=2

hl(R) 6= 0 for R ∈ K ∩Q,

then the point ξ = η = 0 is formally stable in the sense of the Definition 3.

Condition M2 ([28] (Ch. 8, § 3)). System of equations

〈α, q〉 = 0,
n

∑
j,k=1

µjkqjqk = 0

has no solution q ∈ Q, i.e., q > 0, q 6= 0.
Under conditions An

4 and M2, the conditions of Theorem 4 are fulfilled and there is
formal stability. However, the condition M2 is easier to check than the (20) condition.

If n = 2, the M2 takes the form:
system of two equations

α1q1 + α2q2 = 0, µ20q2
1 + 2µ11q1q2 + µ02q2

2 = 0

has no solution q1, q2 > 0 with q1 + q2 6= 0.

However, the solutions of the first equation have the form q1 = −α2

α1
q2. For them,

q1, q2 > 0 only when α1α2 < 0, i.e., the first equation has no solutions with q1, q2 > 0 under
the condition of Theorem 3 α1α2 > 0. Substituting them into the second equation and
reducing by q2

2/α2
1, we obtain the condition

M2 , µ20α2
2 − 2µ11α1α2 + µ02α2

1 6= 0, α1α2 < 0,

which is called the Arnold–Moser condition.
Under this condition there is not only formal stability, but also Lyapunov stability,

because there are one-parameter families of two-dimensional invariant tori with similar
sets of frequencies that lock the origin of coordinates. However, J. Moser [30] in 1968 and
V.I. Arnold [31] in 1963 made mistakes in proving this fact. At the end of the article [25]
there is a criticism of the first proof of Theorem 7 in [30].

On formal stability for n > 2, see also [32–34].
Most works on stability use conditions such as condition M2, where the number-

theoretic character of frequencies αj is not taken into account. However, the structure of
the normal form depends on them. For example, if the equation

〈α, q〉 = 0

has no solutions in integer q 6= 0, then the condition An
∞ is satisfied and the normal form of

the Hamiltonian (5) is g(r). Then any rj is a formal integral and the fixed point is formally
stable. In particular, at n = 2 this is satisfied if the ratio α1/α2 is an irrational number.
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Example 1. In the book [28] (Ch. 7), the stability of the libration points of the planar circular
restricted three-body problem is studied. There n = 2, the frequencies ω1 = α1, ω2 = −α2 with
1 > ω1 > ω2 > 0 satisfy the equation

ω4 −ω2 +
27
4

µ(1− µ) = 0, (22)

where µ is the ratio of the masses of the two bodies and the only parameter of the problem (0 6 µ 6 1).
In this case, the stability is studied for

0 < µ < 0.4. (23)

It is shown in § 4 that according to (4.7) in the normal form (21) h2(α2,−α1) = 0 at

644ω4
1ω4

2 − 541ω2
1ω2

2 + 36 = 0. (24)

Let us show that at these values the frequencies of ω1 and ω2 are incommensurable, i.e., there
is formal stability.

Let us assume ω2
1 = x, ω2

2 = y, and note that by Vieta’s formulae from (22) and (24) the
equations follow

644x2y2 − 541xy + 36 = 0, (25)

x + y = 1, (26)

xy =
27
4

µ(1− µ). (27)

From Equation (25), we obtain

xy =
541±

√
5412 − 4 · 36 · 644

2 · 644
=

541±√199, 945
1288

.

The product xy can have two values

(xy)1 = 0.7671988 . . . ,

(xy)2 = 0.0728632 . . .

However, on the interval (23), the function µ(1− µ) takes the largest value at the right end at
µ = 0.4. There

27
4

µ(1− µ) = 0.2592 . . .

Therefore, it follows from equality (27) that

xy = (xy)2 =
541−

√
5412 − 4 · 36 · 644

2 · 644
=

541−√199, 945
1288

, Ω. (28)

Assume z = x/y, i.e., x = zy. Here z is the ratio of the squares of the frequencies. According
to (26) we obtain

y =
1

z + 1

Substituting this and x = zy in (28), we obtain

z
(1 + z)2 = Ω.

Consequently, z satisfies the quadratic equation

(z + 1)2 = z/Ω.



Axioms 2021, 10, 293 10 of 32

Its roots are

z =
1− 2Ω±

√
1− 4Ω

2Ω
.

Given (28), we see that both values of z are irrational. Consequently, the ratio of frequencies√
z is also irrational. �

Example 2. In the book [28] (Ch. 8), the stability of libration points of a spatial circular restricted
three-body problem is studied. There n = 3, the frequencies ω1 and ω2 are the same as in Example 1,
and ω3 = 1. In § 3 on p. 136, the formal stability theorem is formulated for all values of µ such that
0 < 27µ(1− µ) < 1, except where there is double resonance. Let us show that in this problem, the
double resonance is impossible.

Indeed, in the case of double resonance, the frequencies ω1 and ω2 are commensurate with
each other and commensurate with unity. Let

ω1 =
r
s

, ω2 =
p
q

ω1,

where p, q, r, s—are integers,
0 < p < q, 0 < r < s. (29)

According to (26)
ω2

1 + ω2
2 = 1,

That is,
r2

s2

(
1 +

p2

q2

)
= 1, or 1 +

p2

q2 =
s2

r2 , or

q2r2 + p2r2 = s2q2. (30)

Let us put
k = qr, l = pr, m = qs. (31)

Then the Equation (30) takes the form

k2 + l2 = m2. (32)

As we know, all solutions to the Equation (32) in integer non-negative numbers have the form

k = κ2 − 1, l = 2κ, m = κ2 + 1, (33)

where κ is a non-negative integer. According to (29) and (31) l < k. Therefore, the Equations (33)
will apply when κ > 2, and when κ = 0, κ = 1 and κ = 2 we put

k = 2κ, l = κ2 − 1, m = κ2 + 1. (34)

By direct verification, we make sure that when 0 6 κ < 3, the Equations (31) and (34) are
impossible for integers. When κ > 3, the Equations (31) and (33) follow

q =
κ2 + 1

s
, r =

2κ
p

, qr = κ2 − 1 =

(
κ2 + 1

)
2κ

ps
.

Therefore,

ps =
2κ
(
κ2 + 1

)
(κ + 1)(κ − 1)

. (35)

The numbers κ − 1, κ, κ + 1 have no common factor, and the numbers κ2 − 1 and κ2 + 1
have no common factor other than 2. Therefore, the ratio (35) cannot be an integer.
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2.2. A Neighborhood of a Periodic Solution
2.2.1. Local Coordinates

Let a real Hamiltonian system with n + 1 degrees of freedom have a real 2π-periodic
solutionM and the Hamiltonian function is analytic in some neighborhood of it.

According to [1] (Ch. II, Sect. 2.1) near the solutionM we can introduce such real
local canonical coordinates ξ = (ξ1, . . . , ξn), ψ and η = (η1, . . . , ηn), ρ that the solutionM
is given by equations

ξ = η = 0, ρ = 0, ψ = ψ0 + t

and the Hamiltonian has the form

γ = Σγpql(ψ)ξ
pηqρl = ρ + · · · , (36)

where integers p, q > 0, integer l > 0, real analytic functions γpql(ψ) have ψ the period 2π
and they are expanded in the Fourier series.

Then the Hamiltonian system is

ξ̇ j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξ j
, j = 1, . . . , n,

ψ̇ =
∂γ

∂ρ
, ρ̇ = − ∂γ

∂ψ
.

(37)

2.2.2. Normal Form

For ρ = 0 and ψ = t quadratic in ξ, η part γ2 of the Hamiltonian (36) defines 2π-
periodic linear in ξ, η system

ξ̇ j =
∂γ2

∂ηj
, η̇j = −

∂γ2

∂ξ j
, j = 1, . . . , n. (38)

Let ν1, . . . , ν2n be eigenvalues of its monodromy matrix, i.e., matrix of substitution of
the fundamental matrix of solutions to the system (38) in the period 2π. Let all νj 6= −1.
We put

λj =
1

2π
ln νj, =λj ∈

(
−1

2
,

1
2

)
, j = 1, . . . , 2n.

Using correct numeration one obtains

λj+n = −λj, j = 1, . . . , n.

Let us denote λ = (λ1, . . . , λn).

Theorem 6 ([1] (Ch. II); [3]). There exists a complex formal invertible 2π-periodic in ψ and ϕ
canonical transformation of coordinates in the form of Poisson series

ξ, ψ, η, ρ←→ x, ϕ, y, r,

which reduces the Hamiltonian γ into normal form

g(x, ϕ, y, r) = r +
n

∑
j=1

λjxjyj + ∑ gpqlmxpyqrleimϕ, (39)

where x, y ∈ Cn, 0 6 p, q ∈ Zn, l > 0 and m are integers, and all terms of the second sum are
resonant, i.e.,

〈p− q, λ〉+ im = 0. (40)

The normal form preserves small parameters and linear automorphisms of the ini-
tial system.
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Let <λi = 0, i = 1, . . . , m, <λm+j 6= 0, j = 1, . . . , n − m, and =λk, k 6 l 6 m, are
rational numbers.

Theorem 7. There exists a canonical transformation

xj = uj exp(−iβ j ϕ), yj = vj exp(iβ j ϕ), j = 1, . . . , n,

r = s− i
n

∑
j=1

β jujvj
(41)

with rational β j, which reduces the normal form of the Hamiltonian (39), (40) to an autonomous
power series

h(u, v, s) = s + i
n

∑
j=l+1

γjujvj + ∑ hpqlu
pvqsl ,

where in the first sum all nonzero γj are irrational numbers and in the second sum 0 6 p, q ∈ Zn,
0 6 l ∈ Z, hpql = const ∈ C and present only resonant terms with

〈p− q, γ〉 = 0, (42)

where γ = (γ1, . . . , γn) and γ1 = . . . = γl = 0.

A similar theorem is in [3].
Variable s is now a formal integral of the following system

u̇j =
∂h
∂vj

, v̇j = −
∂h
∂uj

, j = 1, . . . , n, (43)

ϕ̇ =
∂h
∂s

. (44)

If the initial Hamiltonian γ is real for real coordinates ξ, ψ, η, ρ, then in Theorem 6
variables x, y are complex but variables ψ, ρ and ϕ, r are real. Here according to [1] (Chs. I,
II) variables x, y are connected with real variables X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) by
the linear standard transformation

xj =
1√
2i

(
iXj −Yj

)
, yj =

1√
2i

(
iXj + Yj

)
, j = 1, . . . , n.

2.2.3. Families of Periodic Solutions

Let all imaginary numbers among eigenvalues λ be λ1, . . . , λm, i.e., λj = iαj, j = 1, . . . , m.
Let all rational numbers αj have eigenvalues λ1, . . . , λl . Then the family of periodic solu-
tions going through the solutionM satisfies the following system [25]

∂g
∂yj

= λjxja,
∂g
∂xj

= λjyja, j = 1, . . . , l,

∂g
∂ϕ

= 0,
∂g
∂r

= a,

xj = yj = 0, j =l + 1, . . . , n,

(45)

where a is a free parameter. Excluding it, we obtain the system

∂g
∂yj
− λjxj

∂g
∂r

=
∂g
∂xj
− λjyj

∂g
∂r

= 0, j = 1, . . . , l,

∂g
∂ϕ

= 0, xj = yj = 0, j = l + 1, . . . , n.
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After transformation (41) we obtain γ1 = . . . = γl = 0 and Equation (45) takes
the form

∂h
∂vj

= 0,
∂h
∂uj

= 0, j = 1, . . . , l, (46)

∂h
∂s

= a, uj = vj = 0 j = l + 1, . . . , n. (47)

The subsystem of Equation (46) defines the set of all periodic solutions of the subsys-
tem (43). Equation (44) ϕ̇ = ∂h/∂s gives dependence of ϕ from t for each of these solutions.

2.2.4. Families of (n + 1)-Dimensional Irreducible Invariant Tori

Such a family goes through the periodic solutionM only if all eigenvalues λ are pure
imaginary, i.e., <λ = 0, and equation p0 + 〈p, λ〉 = 0 has no integral solutions p0 ∈ Z,
p ∈ Zn. Then in normal form g = g(ρ, r), and our family is defined by the system

∂g
∂ρj

= λja, j = 1, . . . , n,
∂g
∂r

= a,

where a is a free parameter. Excluding it, we obtain the system

∂g
∂pj
− λj

∂g
∂r

= 0, j = 1, . . . , n.

That formal family is analytic if eigenvalues λ satisfy the following condition on small
divisors [25].

Condition ω1

Let ωk = min|p0 + 〈p, α〉| over |p0 + 〈p, α〉| 6= 0, |p0|+ ||p|| < 2k, p0 ∈ Z, p ∈ Zn. Then

−
∞

∑
k=1

log ωk

2k < ∞.

2.2.5. Stability

The periodic solutionM is stable only if all eigenvalues λ have <λ = 0.
Here there is a notion of Lyapunov stability, but at n = 1 the conditions for its existence

coincide with those for formal stability.

Definition 4. Periodic solution

ξ = η = 0, ρ = 0, ψ = ψ0 + t (48)

of a Hamiltonian system

ξ̇ j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξ j
, j = 1, . . . , n,

ψ̇ =
∂γ

∂ρ
, ρ̇ = − ∂γ

∂ψ

(49)

orbitally formally stable if there exists such a power real series on ξ, η, ρ almost periodic on ψ

F = ∑ Fpql(ψ)ξ
pηqρl , Fs(ξ, ψ, η, ρ) + F̃(s+1)(ξ, ψ, η, ρ), (50)

which may diverge, but is a formal sign-defined integral of the system (49).
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In other words, all the coefficients of a power series

n

∑
j=1

(
∂F
∂ξ j

∂γ

∂ηj
− ∂F

∂ηj

∂γ

∂ξ j

)
+

∂F
∂ψ

∂γ

∂ρ
− ∂F

∂ρ

∂γ

∂ψ

must convert to zero and the homogeneous in ξ, η,
√

ρ form Fs(ξ, ψ, η, ρ) > 0, with Fs(ξ, ψ, η, ρ) =
0 only when ξ = η = 0, ρ = 0.

Recall that a function f (ψ) is periodic if it has a single frequency, conditionally (or
quasi) periodic if it has a finite number of frequencies, and almost periodic if it has a
countable number of frequencies. In our case, there will be quasi-periodic functions
Fpql(ψ).

Definition 4 is similar to Definition 2, but one can also define formal orbital stability
similar to Definition 3.

Put α = (α1, . . . , αn) , =λ.

Condition Bn
k . For all integer p with ||p|| , |p1|+ . . . + |pn| 6 k the scalar products 〈p, α〉

are not integers, i.e., the comparison 〈p, α〉 ≡ 0 (mod 1) has no solutions with such p.

Theorem 8 ([1,3]). Under the condition Bn
2 , there exists a complex formal reversible 2π-periodic

on ψ and φ canonical coordinate transformation

ξ, ψ, η, ρ←→ x, φ, y, r,

which brings the Hamiltonian γ to the normal form

g(x, φ, y, r) = r + i
n

∑
j=1

αjxjyj + ∑ gpqlmxpyqrleimφ, (51)

where x, y ∈ Cn, 0 6 p, q ∈ Zn, l > 0 and m are integers, all terms of the second sum have order
in x, y,

√
r above two and resonant, that is,

〈p− q, α〉+ m = 0. (52)

Let us put
rj = xjyj, j = 1, . . . , n; r = (r1, . . . , rn).

Corollary 1. If the condition Bn
4 is satisfied, then the normal form (51), (52) has the form

g = r + i + r〈α, r〉+
n

∑
j,k=1

µjkrjrk + r〈δ, r〉+ εr2 + g̃(5), (53)

where δ = const ∈ Cn, ε = const ∈ C.

Theorem 9 ([3]). The canonical transformation

xj = uj exp(−iαjφ), yj = vj exp(iαjφ), j = 1, . . . , n, (54)

r = s− i
n

∑
j=1

αjujvj (55)

leads the normal form of the Hamiltonian (51) to an autonomous power series

h(u, v, s) = s + ∑ hpqlmupvqsl , (56)

corresponding to the second sum in (51).
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Note that the returns from the variables u, v, s to the original variables are given
by formal power series on ξ, η, ρ with quasi-periodic coefficients on ψ. Let us call the
Hamiltonian (56) a reduced normal form.

The variable s is now the formal integral of the system

u̇j =
∂h
∂vj

, v̇j = −
∂h
∂uj

, j = 1, . . . , n. (57)

The orbital stability problem of the periodic solutionM has now been reduced to the
stability problem of the fixed point u = v = 0, s = 0 in the system (57).

Corollary 2. If the condition Bn
4 is satisfied, then according to (53) and (55) the reduced normal

form (56) is

h =s +
n

∑
j,k=1

µjkrjrk + (s− i〈α, r〉)〈δ, r〉+ ε(s− i〈α, r〉)2 + h̃(5)

=s + εs2 + s〈δ, r〉 − εs2i〈α, r〉+
n

∑
j,k=1

µjkrjrk − i〈α, r〉〈δ, r〉

− ε〈α, r〉2 + h̃(5).

(58)

2.2.6. Real Case

If the original Hamiltonian γ is real under the real variables ξ, ψ, η, ρ, then in Theorem 8
the variables x, y are complex and the variables ψ, ρ and φ, r are real.

If the condition Bn
2 is satisfied, then according to [1] (Chapters I and II) the complex

variables x, y are related to the real variables X, Y by the formulae

xj =
1√
2i

(
iXj −Yj

)
, yj =

1√
2i

(
iXj + Yj

)
, j = 1, . . . , n. (59)

The complex variables xj, yj and their conjugate variables x̄j, ȳj are related by the relations

x̄j = −iyj, ȳj = −ixj, j = 1, . . . , n, φ̄ = φ, r̄ = r. (60)

With complex conjugation, the Hamiltonian (51) is preserved:

ḡ(x, φ, y, r) = g(x, φ, y, r).

Indeed, iαjxjyj = īαj x̄jȳj = iαjxjyj, and we can show that

ḡpqlm(−i)||p+q|| = gqpl(−m). (61)

Note that according to (60)

irj = −ix̄jȳj = (−i)3xjyj = ixjyj = irj, j = 1, . . . , n.

Therefore, in (53), all µjk and ε are real, and all δj are purely imaginary. Assume
δ = 2i∆.

According to (59)

rj = xjyj = −
1

2ß

(
X2

j + Y2
j

)
,

i
2

Rj, j = 1, . . . , n.
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Now (58) takes the form

h = s + εs2 − s〈∆, R〉+ εs〈α, R〉 − 1
4

n

∑
j,k=1

µjkRjRk−

− 1
2
〈α, R〉〈∆, R〉+ 1

4
ε〈α, R〉2 + h̃(5). (62)

All quantities here are real.
All integer vectors q that satisfy the comparison 〈α, q〉 ≡ 0 (mod 1), form in Rn the

lattice L. Let M be its linear hull and Q = {q > 0, q 6= 0} is a non-negative orthant in Rn

with no origin.

Theorem 10. If at ρ = 0 the initial real system with Hamiltonian γ(ξ, ψ, η, ρ) satisfies the
condition Bn

4 and in the entry (62)

n

∑
j,k=1

µjkqjqk + 2〈α, q〉〈∆, q〉 − ε〈α, q〉2 6= 0 for all q ∈ M ∩Q,

then the periodic solution (48) is formally orbitally stable.

2.3. The Neighborhood of an Invariant Torus
2.3.1. Reduction to Normal Form

Let a real analytic Hamiltonian system

ξ̇ j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξ j
, j = 1, . . . , n, (63)

have an invariant torus T k of dimension k. Using the normal form, we can study the
solutions of the system (63) in a neighborhood of the torus T k for any k 6 n [25]. Here
we confine ourselves to the most important case k = n. We call a torus T n regular if in its
neighborhood there are local coordinates ρ = (ρ1, . . . , ρn), ψ = (ψ1, . . . , ψn) that have the
following properties.

1. The coordinates ρ and ψ are canonically conjugate and are analytic functions of ξ
and η.

2. The coordinates ψj are 2π-periodic.
3. The torus T n is specified by the equations ρ = 0.
4. On T n the system (63) induces the system

ψ̇j = ωj = const, j = 1, . . . , n. (64)

Then, in the neighborhood of the regular torus T n the system (63) takes the form

ρ̇j =
∂g
∂ψj

, ψ̇j = −
∂g
∂ρj

, j = 1, . . . , n. (65)

In the neighborhood under consideration, the Hamiltonian function g is 2π-periodic
in each ψj and is expanded in a convergent series

g(ρ, ψ) = ∑ gl(ψ)ρl (66)

where the integer vectors l are non-negative and the coefficients gl are analytic 2π-periodic
functions. By hypothesis, on the torus T n, the system (65) takes the form (64), that is,

g = −〈ρ, ω〉+ · · ·
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where ω = (ω1, . . . , ωn) is its frequency basis.
Now we try to simplify the system (65) by means of a formal canonical local coordinate

transformation
ρ, ψ→ r,ϕ, (67)

where ρ = r + · · · , ψ = ϕ+ · · · , and we have not written out terms of higher degrees
in r. As a result of such a transformation, let g(ρ, ψ) = h(r,ϕ). We expand h(r,ϕ) in a
Poisson series

h(r,ϕ) = ∑ hlmrl exp i〈m,ϕ〉 = −〈r, ω〉+ · · · . (68)

We call the Hamiltonian function h a normal form if in (68) only those coefficients hlm
are nonzero for which

〈m, ω〉 = 0. (69)

The ω̄-condition:

lim inf
|m|→∞

log |〈m, ω〉|
|m| ≥ 0

where the limit is taken over the integers m such that 〈m, ω〉 6= 0.

Theorem 11. If the ω̄-condition is satisfied, there is a formal canonical local coordinate substitu-
tion (67) that reduces the Hamiltonian function (66) to the normal form (68), (69).

2.3.2. Families of n-Dimensional Irreducible Regular Tori

Torus T n is irreducible, if equation

〈ω, p〉 = 0

has no integer solutions p ∈ Zn. Then normal form h(r,ϕ) in (68) does not depend on ϕ,
i.e., h = h(r).The formal family of our tori satisfies the system [25]

∂h
∂rj

= −ωja, j = 1, . . . , n, (70)

where a is a free parameter, i.e.,

∂h
ωj∂rj

− ∂h
ω1∂r1

= 0, j = 2, . . . , n.

Let the MacLaurin series for h have the form

h = −〈r, ω〉+ 1
2
〈r, Tr〉+ · · · , (71)

where T is a symmetric square matrix. In our case, ∂h/∂ϕj = 0, and so the system (70) is

∂h
∂r

= −ωa.

Taking account of (71), we obtain

ω− Tr + · · · = ωa

that is,
Tr + · · · = ω(1− a)

In the generic case, det T 6= 0, and so the system has a unique one-parametric solution

r = r(a− 1) = T−1ω(1− a) + · · ·
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that is, the set A is a one-parameter family of n-dimensional regular tori with frequency
basis ωa.

The formal family (58) is analytic, if frequencies ω satisfy the following condition on
small divisors.

Condition ωn

Let δk = min|〈ω, p〉| for p ∈ Zn, ||p|| 6 2k. Then

−
∞

∑
k=1

log δk

2k < ∞.

Thus, we have proved the following result.

Corollary 3. In a generic Hamiltonian system with n degrees of freedom, an invariant regular
torus T n, whose frequency basis ω is non-resonant and satisfies the ω-condition, lies on an analytic
one-parameter family of n-dimensional tori, filled by conditionally-periodic solutions with frequency
basis aω. The Hamiltonian function changes monotonically in this family. Torus T n is not
bifurcating, if det T 6= 0.

2.3.3. Stability

Non-resonant torus is formally stable.

3. The Truncated Systems Method

If an equation (or a system of equations) contains a linear part, then sometimes it can
be reduced to normal form. However, if the equation does not have a linear part, then the
question arises: what should be considered as the first approximation of the equation (or
the system)? The answer to it is given by the method of truncated equations, which makes
it possible to write out several first approximations and for each indicate the region in the
space of variables and parameters where it dominates.

3.1. Truncated Hamilton Function

Let the vectors x = (x1, . . . , xn), y = (y1, . . . , yn) and µ = (µ1, . . . , µs) be canonical
variables and small parameters, respectively. Let the autonomous (time-independent)
Hamilton function be expanded in a power series

h(x, y, µ) = ∑ hpqrxpyqµr (72)

where p = (p1, . . . , pn), xp = xp1
1 · · · x

pn
n and hpqr are constant coefficients. Each term

of series (72) is associated with its vector exponent Q = (p, q, r) ∈ R2n+s. The set S of
all points Q with hQ 6= 0 in the sum (72) is called the support S = S(h) of the sum (72).
The convex hull Γ(S) = Γ(h) of the support S is called the Newton polyhedron of the
sum (72). Its boundary consists of vertices Γ

(0)
j , edges Γ

(1)
j and faces Γ

(d)
j of dimensions

d : 1 < d 6 2n + s− 1. The intersection S ∩ Γ
(d)
j = S(d)

j is called the boundary subset of the

set S. Each generalized face Γ
(d)
j (including vertices and edges) corresponds to:

• Normal cone

U(d)
j =

{
P :
〈

P, Q′
〉
=
〈

P, Q′′
〉
<
〈

P, Q′′′
〉
, where Q′, Q′′ ∈ S(d)

j , Q′′′ ∈ S\S(d)
j

}
• Truncated sum

ĥ(d)j = ∑ hpqxpyqµr over Q = (p, q, r) ∈ S(d)
j .
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It is the first approximation to the sum (72) when

(log|x1|, . . . , log|xn|, log|y1|, . . . , log|yn|, log|µ1|, . . . , log|µs|)→ ∞

along U(d)
j . Thus, using truncated Hamiltonian functions, we can find approximate problems.

3.2. Restricted Three Bodies Problem (RTBP)

Let two bodies P1 and P2 with masses 1− µ and µ, respectively, revolve around their
common center of mass with a period of 2π. The plane circular restricted three-body
problem studies the plane motion of a body P3 of infinitesimal mass under the action of
the Newtonian attraction of bodies P1 and P2. In a rotating (synodic) coordinate system,
the problem is described by an autonomous Hamiltonian system with two degrees of
freedom and one parameter µ. It was introduced by Euler in 1772 [35]. The Hamilton
function has the form [1]

h ,
1
2

(
y2

1 + y2
2

)
+ x2y1 − x1y2 −

1− µ√
x2

1 + x2
2

− µ√
(x1 − 1)2 + x2

2

+ µx1. (73)

Here body P1 = {x, y : x1 = x2 = 0} and body P2 = {x, y : x1 = 1, x2 = 0}, where
x = (x1, x2), y = (y1, y2). Consider small values of the mass ratio µ > 0. For µ = 0 the
problem becomes the problem of two bodies P1 and P3. However, here it is necessary to
remove from the phase space the points corresponding to the collisions of bodies P2 and
P3. Collision points split the solutions of the problem of two bodies P1 and P3 into parts.
For small µ > 0 near the body P2 there is a singular perturbation of the case µ = 0.

In order to find all the first approximations of the restricted three-body problem, it is
necessary to introduce local coordinates

ξ1 = x1 − 1, ξ2 = x2, η1 = y1, η2 = y2 − 1

near the body P2 and expand the Hamiltonian function in a power series in these coordi-

nates. After expanding 1/
√
(ξ1 + 1)2 + ξ2

2 in a Maclaurin series, Hamilton’s function (73)
takes the form

h +
3
2
− 2µ ,

1
2

(
η2

1 + η2
2

)
+ ξ2η1 − ξ1η2 − ξ2

1 +
1
2

ξ2
2 + f

(
ξ1, ξ2

2

)
+

+µ

ξ2
1 −

1
2

ξ2
2 −

1√
ξ2

1 + ξ2
2

− f
(

ξ1, ξ2
2

),
(74)

where f is a convergent power series that does not contain terms of order less than three. Let

p = ord ξ1 + ord ξ2, q = ord η1 + ord η2, r = ord µ

The set S of these points (p, q, r) consists of the points

(0, 2, 0), (1, 1, 0), (2, 0, 0), (k, 0, 0), (2, 0, 1), (−1, 0, 1), (k, 0, 1),

where k = 3, 4, 5, . . . The convex hull of the set S is the polyhedron Γ ⊂ R3. Surface ∂Γ of
the polyhedron Γ consists of faces Γ

(2)
j , edges Γ

(1)
j and vertices Γ

(0)
j . To each such element

Γ
(d)
j there corresponds a truncated Hamiltonian ĥ(d)j , which is the sum of those terms

of series (74) whose points (p, q, r) belong to Γ
(d)
j . Truncated Hamiltonian functions ĥ(d)j

are different first approximations of function (74), valid in different regions of the space
(ξ1, ξ2, η1, η2, µ). Figure 1 depicts a polyhedron Γ for series (74) in p, q, r, coordinates, which
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is a semi-infinite trihedral prism with an oblique base. It has four faces and six edges. Let
us consider them.

Figure 1. The polyhedron Γ for the Hamiltonian function (74) in coordinates p, q, r.

The face Γ(2)
1 , which is the oblique base of the prism Γ, contains the vertices

(0, 2, 0), (2, 0, 0), (−1, 0, 1) and point (1, 1, 0) ∈ S

It corresponds to the truncated Hamilton function

ĥ(2)1 =
1
2

(
η2

1 + η2
2

)
+ ξ2η1 − ξ1η2 − ξ2

1 +
1
2

ξ2
2 −

µ√
ξ2

1 + ξ2
2

. (75)

It describes Hill’s problem [10], found in 1878, which is non-integrable. A power
transformation

ξ̃i = ξiµ
−1/3, η̃i = ηiµ

−1/3, i = 1, 2. (76)

reduces the corresponding Hamiltonian system to the Hamiltonian system with the Hamil-
tonian function of the form (75), where ξi, ηi, µ must be replaced by ξ̃iη̃i, 1, respectively.

Face Γ(2)
2 contains points

(0, 2, 0), (1, 1, 0), (2, 0, 0) and (k, 0, 0) ⊂ S

It corresponds to the truncated Hamiltonian function ĥ(2)2 , which is obtained from the
function h at µ = 0. It describes the problem of two bodies P1 and P3, which is integrable.

Consider the edges. Of the six edges, one is improper. It passes through the point (0, 2, 0)
parallel to the vector (1, 0, 0). On three edges, q = 0, that is, for them the truncated Hamiltonian
functions do not depend on η1, η2, and the solutions of the corresponding truncated Hamiltonian
systems have ξ1, ξ2 = const, which is not interesting. Two edges remain.

Edge Γ
(1)
1 . It contains the points (0, 2, 0) and (−1, 0, 1) of the set S. The corresponding

truncated Hamilton function is

ĥ(1)1 =
1
2

(
η2

1 + η2
2

)
− µ√

ξ2
1 + ξ2

2

(77)

It describes the problem of two bodies P2 and P3. Power transformation (76) reduces it
into a Hamilton system with a Hamilton function of the form (77), where ξi, ηi, µ is replaced
by ξ̃i, η̃i, 1, respectively.
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The edge Γ
(1)
2 contains points (2, 2, 0), (1, 1, 0), (0, 2, 0) of the set S. It corresponds to

the truncated Hamilton function (3.4) with µ = 0. It describes an intermediate problem
(between the Hill problem and the problem of two bodies P1 and P3), which is integrable.
This first approximation was introduced by Hénon [36,37] in 1969.

Therefore, very close to the body P2 the first approximation of the original restricted
problem with the Hamiltonian function (74) is the problem of two bodies P2 and P3 with
Hamiltonian (77), just close is the Hill problem with Hamiltonian (75), further from the
body P2 is the intermediate problem, and far from the body P2 is the problem of two
bodies P1 and P3. Near the body P2, the periodic solutions of the restricted problem
are perturbations of both periodic solutions of all the above four first approximations
and the results of gluing the hyperbolic orbits of the two-body problem P2, P3 with arc-
solutions of either the two-body problem P1, P3, or an intermediate problem. In [38–42],
periodic solutions of the intermediate problem were used as generators for finding periodic
quasi-satellite orbits of the restricted problem.

Therefore, the restricted three-body problem was stated by L. Euler in 1772, one of
its first approximations was found by G. Hill in 1878 as a result of long work, another of
its first approximations was found by M. Hénon in 1969 again as a result of non-trivial
work. However, using the polyhedron, these approximations and the others can be found
without difficulty.

3.3. Truncated Algebraic Systems

Consider now the set of polynomials

f1(x, y, µ), . . . , fm(x, y, µ). (78)

Each f j(x, y, µ) has its own support Sj ⊂ R2n+s and all accompanying objects: New-

ton’s polyhedron Γj its generalized faces Γ
(dj)
jkj

, their normal cones U(dj)
jkj

, boundary sets

S(
dj)

jkj
, truncated polynomials f̂ (

dj)
jkj

. Moreover, for every non-empty intersection

U(d1)
1k1
∩U(d2)

2k2
∩ · · · ∩U(dm)

mkm
(79)

there corresponds to a set of truncations

f̂ (d1)
1k1

, f̂ (d2)
2k2

, . . . , f̂ (dm)
mkm

, (80)

which is the first approximation of the set (78), for

(log |x|, log |y|, log |µ|)→ ∞

near the intersection (79) and is called the truncation of the set (78).
Consider now the system of equations

f j = 0, j = 1, . . . , m, (81)

corresponding to the set (78). System (81) corresponds to all the objects indicated for the
set (78), as well as the truncated systems of equations

f̂ (
dj)

jkj
= 0, j = 1, . . . , m, (82)

each of which corresponds to one set of truncations (80). Each truncated system (82) is the
first approximation of the complete system (81).
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3.4. Analytical Computation of Local Families

In Section 2, we obtained systems of equations of the form (78), (81), the roots of
which are families of stationary points, of periodic solutions and of invariant tori, when
coordinates tend to zero. The method, described in Section 3.3, allows to calculate such
roots in the form of power series from some parameters. Examples of such computations
are shown in [43]. The method of truncated equations and systems allows to calculate
asymptotic solutions for ordinary differential equations: the Beletskii equation of satellite
oscillations [5], the problem of periodic flyby of planets with a close approach to the Earth
and for partial differential equations: boundary layer on a needle.

4. Generating Families of Periodic Solutions and Generating Families of Invariant Tori

As soon as electronic computers appeared, scientists began to calculate families of
periodic solutions of the restricted three-body problem for different cases: Sun–Jupiter
(µ ≈ 10−3), Earth–Moon (µ ≈ 10−2), etc. It turned out that these families are very
similar, and their periodic solutions resemble solutions to the two-body problem. In 1968,
M. Hénon [44] realized that it was necessary to consider the limits of these families for
µ→ 0. Generating families allow to understand and to prescribe by analytic computation
singularities of families for small parameter µ.

4.1. Method

Let the Hamilton function H(µ) depend analytically on small parameters µ = (µ1, . . . , µs)
and the corresponding Hamiltonian system has families of periodic solutions Fj(µ). Some
of these families may have limits Fj(0) at µ → 0. Families Fj(0) are called generating.
Their solutions are formed by parts of solutions of the Hamilton limit system with µ = 0.

If this limit system is integrable, then the generating families can be described analyti-
cally. This approach was proposed by Hénon [44]. It was used for the Hill problem and for
the restricted three-body problem [1] (Ch. III-V), [7,8].

4.2. The Hill Problem

Its Hamilton function has the form

H =
1
2

(
η2

1 + η2
2

)
+ ξ2η1 − ξ1η2 − ξ2

1 +
1
2

ξ2
2 −

1√
ξ2

1 + ξ2
2

. (83)

The corresponding system

ξ̇ j =
∂H
∂ηj

, η̇j = −
∂H
∂ξ j

, j = 1, 2,

describes the motion of the Moon (P3) with zero mass under the influence of the attraction
of the Sun (P1), located at infinity, and the Earth (P2) with mass 1, located at the origin of
coordinates. The Hamilton function (83) is analytic in

ξ, η ∈
{
R4\ξ1 = ξ2 = 0

}
.

We apply the canonical coordinate transformation

ξ j = εXj, ηj = εYj, j = 1, 2,

and we obtain the Hamiltonian system

Ẋj =
∂h
∂Yj

, Ẏj = −
∂h

∂Xj
, j = 1, 2, (84)
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where
h =

1
2

(
Y2

1 + Y2
2

)
+ X2Y1 − X1Y2 − X2

1 +
1
2

X2
2 −

1

ε3
√

X2
1 + X2

2

.

Let ε =
√

2 | H | and H → −∞. Then, in the limit, we obtain system (4.2) with

h = h0 =
1
2

(
Y2

1 + Y2
2

)
+ X2Y1 − X1Y2 − X2

1 +
1
2

X2
2 .

This is the Hénon problem [36]. For h0, system (84) is linear and, therefore, integrable.
Since the Hamiltonian h0 is homogeneous, it suffices to consider it for h0 = 1/2. It has one
regular periodic solution

X1(t) = cos t, X2(t) = −2 sin t.

If the orbit (X1(t), X2(t)) of the solution to the Henon problem passes through
the point

X1 = X2 = 0, (85)

then the body P3 collides with the body P2 and the solution cannot be continued through
the collision. Therefore, point (4.3) divides the solution into independent parts. Hénon [36]
found all the arc-solutions that start and end with such collisions. They form a countable
set of two types. The arc-solutions of the first type are denoted by the symbols ±j, j ∈ N,
and their orbits are epicycloids. For j = +1,+2,+3 they are shown in Figure 2. The orbits
of arc-solutions with negative j values are symmetric to them about the X2 axis.
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(a) j = +1

−4

−3

−2

−1

1

2

3

4
X2

−1 1
X1

O

(b) j = +2
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X1

O

(c) j = +3

Figure 2. Arc-solutions of the first type for j: +1 (a), +2 (b) and +3 (c).

The arc-solutions of the second type are denoted by the letters i and e, their orbits are
ellipses passing through the point (85). They are shown in Figure 3.
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Figure 3. Arc-solutions of the second type i (a) and e (b).

Theorem 12. ([45]) A sequence of arc-solutions that does not contain two successively identical
arc-solutions of the second type is a generating solution to the Hill problem.

Here the generating family of periodic solutions consists of one solution. All known
families of periodic solutions to the Hill problem include at least one generating solution.

In the restricted three-body problem, there is a countable set of one-parameter gener-
ating families of periodic solutions. Some of them are quite complex [7].

The same approach is applicable to families of n-dimensional invariant tori. The Hill
problem has no generating families of them, but the RTBP has an infinite amount: indeed
all solutions to the two-body problem with fixed irrational mean motion form such a
family [1]. However, generating families of invariant tori are not studied yet.

5. Numerical Computation of Families of Periodic Solutions and of Invariant Tori

In Sections 2 and 3, we describe a way for computation of local such families near a sta-
tionary point, near a periodic solution and near n-dimensional invariant torus. For periodic
solutions, there are many methods for numerical continuation of their families (see [46–49])
and a lot applications of these methods.

For invariant tori, there is one method for numerical computation of their family
proposed by C. Simó [50] (see also [51]). Therefore, the method of computation of families
of invariant tori appeared only since 1998.

6. Generalized Problems

Usually in celestial mechanics, bodies with non-negative masses are considered. How-
ever, Batkhin [13] proposed to consider problems where some masses are negative. In the
Hill problem with body mass equal to−1 (called the anti-Hill problem), families of periodic
solutions are extensions of families of periodic solutions to the classical Hill problem. There-
fore, it is more convenient to calculate families of periodic solutions for both problems at
once: for the Hill problem and for the anti-Hill ones. This approach provides new families
of periodic solutions for the classical Hill problem.

Figure 4 shows a diagram of the connections between these families of the Hill (left)
and the anti-Hill (right) problems. The center column gives the generating solutions for
these families.

The usefulness of negative masses in Celestial Mechanics was only realized after 2014.
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Figure 4. Diagram of connection between main families of the Hill and anti-Hill problems. The upper
axis shows the change of value −h of the Hamiltonian function (83).

7. Skeletons

In some parts of the phase space of the Hamilton system, there are many families of
periodic solutions, invariant tori and they form the “skeleton” of this part of the phase
space. Therefore, the calculation of such families is very useful for studying the structure
of the phase space.

In some problems, there are many computed families of periodic solutions, but their
number is not yet sufficient to form a skeleton. For recent results in this direction for the
restricted three-body problem, see [9,15,52,53]. For the Hill problem, see [54] (§ 10.4), [55]
(§ 19), [11–13,36,37,45,56–58]. However, families of invariant tori were not studied yet.

8. Stability in a Linear Multi-Parameter Hamiltonian System

The last two sections presented the description of methods providing an investigation
of stability for the case of a Hamiltonian that depends in a polynomial way on the parameter
vector P of the parameter space Π. Assuming a generic case, we describe in Section 8 the
method which allows finding in the parameter space such domains that SP is Lyapunov
stable either in the full problem or in the linear approximation of the full problem. This
method essentially explores modern elimination theory and can be implemented in any
computer algebra system.

The study of Lyapunov stability of the SP of a Hamiltonian system in the case in
which the number of degrees of freedom is greater than two requires considerable effort.
This is due, on the one hand, to the fact that the stability of the equilibrium position in
the linear approximation can be destroyed by any arbitrarily small perturbation of higher
order. On the other hand, the Arnold-Mozer theorem on the stability of the equilibrium
position is inapplicable for large dimensions. However, for many applications, the formal
stability proposed by J. Moser [27] is quite sufficient.

Let us consider the simplest invariant manifold of dimension 0, namely, the stationary
points of a Hamiltonian function H(z) depending in a polynomial way on the parameter
vector P ∈ Π ≡ Rs, where s is the dimension of the parameter space Π. The proposed
methods can be applied to the case of manifolds of large dimensions, i.e., in the case of
studying Hamiltonian phase flow near a periodic solution or near an invariant torus.



Axioms 2021, 10, 293 26 of 32

In the generic case, an analytic time-independent Hamiltonian function H(z) in the
vicinity of the SP, coinciding with the origin, is expanded into a convergent series of
homogeneous polynomials Hk of degree k of its phase variables z = (x, y)

H(z; P) =
∞

∑
k=2

Hk(z; P). (86)

The well-known Lagrange–Dirichlet theorem [26] and [55] (§ 29) states that SP is stable
if the quadratic form H2(z) is sign-determined (see Theorem 3).

If the number of degrees of freedom is not more than two

• Stability is determined by the Arnold–Moser theorem in the absence of resonances of
order four or less, which requires normalizing H to order four;

• For resonances of order less than four, the stability conditions are derived in the works
of A. P. Markeev and A. G. Sokolsky (see [28] and also Section 2.1.5).

The series (86) starts with the quadratic Hamiltonian H2(z; P) defining the local
dynamics near the SP. The behavior of the phase flow in the first approximation is described
by a linear Hamiltonian system

ż(t) = B(P)z, B(P) =
1
2

J
∂2H2(P)

∂z∂z
. (87)

Let us recall here the main properties of a linear Hamiltonian system.

1. If λj is an eigenvalue of the matrix B, then −λj is also its eigenvalue. All eigenvalues
λj, j = 1, . . . , 2n, of the matrix B can be reordered in such a way that λj+n = −λj,
j = 1, . . . , n.

2. The characteristic polynomial f̌ (λ) of the matrix B contains only even powers of λ, so
it is a polynomial in µ = λ2. The following [16] polynomial

f (µ) =
n

∑
k=0

fn−k(P)µ
k, f0 ≡ 1, (88)

is called semi-characteristic.
3. If <λj 6= 0 for any j, i.e., the SP is hyperbolic, then it is structurally stable according to

the Hartman–Grobman theorem.
4. For an elliptic SP, the behavior of the phase flow in its vicinity can only be obtained by

taking into account the nonlinear terms. Usually this is performed using KAM-theory,
but here such study is performed using the Hamiltonian normal form described in
Section 2.

Definition 5. The stability set Σ of the system (87) is the set of all values of parameter P ∈ Π for
which the SP z = 0 is Lyapunov stable.

In terms of roots of a semi-characteristic polynomial (88), the condition of stability of
the SP is given by

Theorem 13 ([16]). The SP z = 0 of the linear Hamiltonian system (87) is Lyapunov-stable if and
only if

• All the roots µk of the semi-characteristic polynomial (88) are real and non-positive;
• All elementary divisors of the matrix B are simple.

Let us first briefly recall the definition of a k-th order subdiscriminant of an arbitrary
monic polynomial of n degree (for more details, see [59]).

Definition 6. Let
fn(x) = xn + a1xn−1 + · · ·+ an−1x + an (89)
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be some monic polynomial from the x variable. Then its k-th subdiscriminant D(k)( fn),

D(k)( fn) = ∑
I⊂{1,...,n}
#(I)=n−k

∏
(j,l)∈I

l>j

(
xj − xl

)2,

where xj are roots of the polynomial (89), I is any non empty subset of the set {1, 2, . . . , n}, #(I) is
its cardinality (number of elements in I). For k = n− 1 we put D(n−1)( fn) = n and for k = n we
put D(n)( fn) = 1. For k = 0 we obtain D(0)( fn) = D( fn) the classical discriminant.

The criteria of reality and negativity of roots is given by the following statement.

Proposition 1. For all roots of a polynomial f (µ) of degree n to be real, negative, and distinct, it
is necessary and sufficient that the conditions

fi(P) > 0, i = 0, . . . , n− 1, D(k)( f ) > 0, k = 0, . . . , n− 1, (90)

where D(k)( f ) is the k-th sub-discriminant of the polynomial f (µ).

Checking the simplicity of elementary divisors of matrix B is provided by calculating
the rank of matrix MB(µ) ≡ B−√µiE for multiple roots of polynomial f (µ).

Proposition 2. If µi = 0 is a root of f (µ) of multiplicity l, then all corresponding elementary
divisors of matrix MB(0) are simple if and only if rank MB(0) = 2m− 2l.

If µi < 0 is a root of f (µ) of multiplicity l, then all corresponding elementary divisors of
matrix MB(µi) are simple if and only if rank MB(µi) = 2m− l.

The ∂Σ boundary of the stability set Σ consists of parts of surfaces satisfying

1. The condition of zero roots F0 = {P : fn(P) = 0};
2. The condition of multiple roots F2 = {P : D( f ) = 0}, where D( f ) is the discriminant

of the polynomial f (µ).

Assuming that functions fn(P) and D( f ) are polynomials in P, we obtain the problem
of description of the affine varieties F0 and F2, which divide the space of parameters Π into
cells. The appropriate cells are included in the stability set Σ according to Proposition 1.
The boundaries of these cells are selected according to Proposition 2 with the help of
multiple roots founded from (94).

Remark 1. According to Proposition 1 the set of stability Σ is a solution of the system (90), i.e., it
is a semi-algebraic set. It can be computed with the algorithm of cylindrical algebraic decomposition
(CAD) [59] (Sect. 5). The CAD algorithm usually demonstrates rather high computational
complexity.

For the system (87), let the stability set Σ be calculated. Then for each value of P ∈ Σ
the eigenvalues of the matrix B(P) are purely imaginary λj = −λj+n = iωj, j = 1, . . . , n
and elementary divisors are simple. In this case, the Hamiltonian H2(z) is reduced to the
normal form with a set of invariants σi(P), i = 1, . . . , n,

g2 =
1
2

n

∑
i=1

λ̃i(P)
(

x2
i + y2

i

)
, λ̃i(P) = σi(P)ωi(P), σi(P) = ±1. (91)

The change of the signature s of the quadratic form H̃2 can occur while crossing the
hypersurface F0, which divides the stability set Σ into regions Σj with the same signature
value s. Let us distinguish those Σj regions for which s 6= ±2n, i.e., for them the Lagrange–
Dirichlet theorem is inapplicable. The formal stability of the SP should be studied in these
regions Σj of the stability set Σ.
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Remark 2. To determine the invariants σi and consequently the signature s of the normal form
(91), it is not necessary to perform a normalization procedure. It is sufficient to use the method
described in [17].

9. Studying of Formal Stability of Stationary Point

Here, we give a schematic description of the method for studying the formal sta-
bility of the SP. This method is based on the following key results: normal form of the
Hamiltonian at the SP, Bruno’s Theorem 4 on formal stability and q-analog of the classical
elimination theory.

In the absence of strong resonances between eigenvalues of a linearized Hamiltonian
system in the neighborhood of the SP, the condition for its formal stability is formulated
by the Bruno theorem [29]. In the paper [17], a scheme for investigating formal stabil-
ity was proposed. This scheme assumes, firstly, that the set of stability Σ of the SP in
linear approximation is computed, and secondly, that the so-called resonant sets Rq of
the characteristic polynomial f̌ (λ) corresponding to strong resonances 2:1, 3:1 between
eigenvalues are found. Here we consider a method for investigating the stability of the SP
of a multi-parameter Hamiltonian system with more than two degrees of freedom, based
on the description of the discriminant and resonant sets of the real polynomial proposed
in [18].

One of the earliest results on the formal stability of the SP is

Theorem 14 (Birkhoff). If for some value of the parameter vector P ∈ Σ all components of the
vector λ of eigenvalues are rationally incommensurable, i.e., the equation 〈λ, p〉 = 0 has no integer
solution p ∈ Zn, p 6= 0, then there exists a formal canonical transformation w of the variables
(x, y) → (ρ,ϕ) such that the Hamiltonian H(w(x, y)) is a power series over ρ. Here ρ,ϕ are
action-angle variables.

The Birkhoff theorem is difficult to apply because resonance sets are dense everywhere
in the parameter space Π.

Let the condition An
4 from Section 2.1.5 take place, i.e., 〈K, Λ〉 6= 0 for K ∈ Zn, 0 <

‖K‖ 6 4, then it is known that there exists an analytic canonical transformation (x, y)→
(ρ,ϕ) such that the new Hamiltonian g has the form

g(ρ,ϕ) = g2(ρ) + g4(ρ) + r(ρ,ϕ),

where g2(ρ) = 〈λ, ρ〉, g4(ρ) = 〈Cρ, ρ〉, C =
[
cij
]n

i,j=1, and r(ρ,ϕ) is a polynomial of

variables (ρ,ϕ) of degree three or higher in ρ.

Theorem 15 (Bruno [29]). If on any pair of nonzero integer vectors K1 and K2 of ortant ki > 0,
i = 1, . . . , n, which are solutions to the equation

〈K, λ〉 = 0, (92)

bilinear form KT
1 BK2 6= 0 at λ 6= 0, then the SP z = 0 of the Hamilton system is formally stable.

Note that the condition (92) of the Bruno theorem is equivalent to the fact that the
semi-algebraic system g2(ρ) = g4(ρ) = 0, ρ > 0 is incompatible.

Thus, to apply the Bruno theorem on formal stability, it is necessary to find the
boundaries of regions in the parameter space Π defined by resonance sets.

Here we consider a scheme for studying the formal stability of the equilibrium position
of a Hamiltonian system under the following assumptions:

• Number of degrees of freedom more than two;
• The quadratic form H2(z) in the expansion (86) is nondegenerate and not sign-defined;
• Hamiltonian function H(z) smoothly depends on the parameter vector P.
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The proposed research scheme essentially uses the normal form of the Hamiltonian
system near the SP, a method for computing the stability set Σ of a linear multi-parameter
Hamiltonian system [16] and a method for computing the resonance set of a real poly-
nomial [18]. These methods, in the case of polynomial dependence on the parameter P,
essentially use so-called quantum calculus [60].

The application of q-subdiscriminants D(k)
q ( fn) of the characteristic polynomial fn

allows not only to find out if it has commensurable roots, but also, under certain conditions,
to find these roots without having to calculate all its eigenvalues. If the coefficients of
polynomial (89) depend on parameters, both q-subdiscriminants are functions of these
parameters, which makes it possible to determine at what values of q resonance takes place
and to find its multiplicity and order.

To determine the rational comparability of the roots of the polynomial, we will use
q-analogs of the classic derivative and subdiscriminant.

Definition 7. Jackson derivative (q-derivative, q-differential Jackson operator):

(Aq f )(x) ,


f (qx)− f (x)
(q− 1)x

, x 6= 0,

f ′(0), x = 0,
q 6∈ {0, 1}.

The Jackson derivative has all the properties of an ordinary derivative. In addition
to the above properties, we note that the q-derivative function xn is equal to [n]qxn−1,
and applying q-derivative to q-binomial of degree n again gives q-binomial of degree n− 1
multiplied by [n]q.

With the q-derivative, the q-analog of the classic polynomial discriminant is now
determined.

Definition 8. Define q-discriminant Dq( fn) of polynomial fn(x) as the resultant of a polynomial
pair fn(x) and (Aq fn)(x):

Dq( fn) = (−1)n(n−1)/2 Resx( fn(x), (Aq fn)(x)).

The equality to zero of the q-discriminant of polynomial fn(x) with fixed q is a sig-
nature of the existence of at least one pair of q-commensurable roots; however, the de-
tailed structure of all commensurable roots can be obtained using the sequence of q-
subdiscriminants of various orders of the polynomial fn(x).

Sq( fn) ,
(

D(0)
q ( fn), D(1)

q ( fn), . . . , D(n−1)
q ( fn)

)
. (93)

Theorem 16 ([18]). The fn(x) polynomial has exactly n− d different sequences of q-commensurable
roots if and only if the first non-zero q-subdiscriminant in sequence (93) of k-th q-subdiscriminants
D(k)

q ( fn), k = 0, . . . , n− 2, has the index d.

All commensurable roots of the polynomial fn(x) are the roots of the largest common
polynomial divisor of fn(x) and its q-derivative (Aq fn)(x):

f̃q(x) = GCD( fn(x), (Aq fn)(x)).

Theorem 16 states that the degree of the polynomial f̃q(x) is equal to the number d of
the first non-zero q-subdiscriminant in the sequence Sq( fn).

Note that q-subdiscriminants are calculated using any of the matrix methods to
calculate the classical subresultants of the polynomial pair fn(x) and (Aq fn)(x) [61].

Let, in the conditions of Theorem 16, the first non-zero q-discriminant have the index
d, 0 < d < n− 1. Let us denote with M(i)

d , i = 1, . . . , d, d the modified q-Sylvester matrix
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Sylvq( fn), where the column with the number 2n− 1− d is replaced by its column with

the number 2n − 1− d + i and with M(i)
d which is the determinant of this inner. Then,

as shown in [18], the following proposition takes place.

Proposition 3. If in the sequence (93) the first one different from zero q-subdiscriminant D(d)
q ( fn)

has the index d, then
f̃q(x) ≡ D(d)

q xd + M(1)
d xd−1 + · · ·+ M(i)

d . (94)

The roots of polynomial (94) are either q-commensurable roots for q 6= 1 or multiple
roots for q = 1 of the initial polynomial (89).

Let us describe schematically the procedure of formal stability studying.
In the first step, the stability set Σ ⊂ Π of the linear Hamiltonian system (87) is

computed. Then the open regions Σj in which the signature s of the quadratic form
H2(z) is not equal to ±2n, i.e., the Lagrange–Dirichlet theorem on Lyapunov stability is
not applicable.

In the next step, the resonance sets R2( f ) and R3( f ) are computed for the semi-
characteristic polynomial (88), dividing each region Σj into subregions that have reso-
nances of order four and higher. Then, in these regions, the procedure of reducing the
Hamiltonian (86) to the fourth-order normal form g(ρ,ϕ) = g2(ρ) + g4(ρ) is applied.
After normalization, we check whether the condition of the Bruno theorem is satisfied.

On sections of resonance sets Rk( f ), k = 2, 3, where there is a single resonance,
the theorems of [28] (Ch. 4, §§ 2, 3) are applied. For the case of multiple resonance,
as well as for resonance of order two, the formal stability study can be carried out using a
different approach.

On the one hand, the presence of resonance leads to additional first formal integrals,
which allows decreasing the number of degrees of freedom of the normalized system [1]
(Ch. I, §3), and in some cases even to integrate it. On the other hand, finding the invariant
coordinate subspaces of the Hamiltonian normal form reduces the phase flow to subspaces
of fewer dimensions, on which one can search the realization of conditions of analyticity of
the normalizing transformation.
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